

West Coast Ocean Energy Resources

Presented by: **Mirko Previsic** re vision consulting, LLC

Contributors

Roger Bedard - EPRI George Hagerman – Virginia Tech Brian Polagye – University of Washington Walt Musial - NREL

Outline

- Resource Assessment Fundamentals
- Wave
- Tidal
- Wind
- Confidence in Resource Estimates
- Summary

What's extractable

Primary Hydrokinetic Resource

Can be measured and Modeled

Technology (Machine) Related Constraints

Is Technology Specific

- Machine Size
- Power Density
- Deployment Area Size
- Foundation
- Spacing Requirements

Practical Constraints

- Environmental Effects
- -Competing Uses of Space
- NIMBY Issues

Is Site Specific

Wind Energy – Power Density

Wind Resources - CA

Wind Resources OR/WA

Wind Extractable Resource

Installed capacity is limited by spacing assumptions for Wind Turbines to avoid rotor wake effects of one turbine impacting another turbine

- ⇒NREL studies assumes a deployment density of 5MW per square kilometer
- ⇒Capacity Factor of wind turbine depends on wind class (35%-50%)
- ⇒Average Power Production per square mile is 1.75MW 2.5MW
- ⇒Annual; Energy Production per square mile is 15,000MWh/year 22,000MWh/year

Wind Extractable Resource by Water Depth

Bathimetry showing offshore wind resources Wind Class 4 and greater by depth (Source: internal report obtained from NREL)

Assumes: 5MW/km^2

Wave Energy Resource Characteristics

U.S. Offshore Wave Energy Resources

West Coast Offshore Wave Energy Resources

State	Coast Length	Pave (kW/m)	Ptotal (MW)
California	1200 km	30	36,000
Oregon	280 km	30	8,400
Washington	150 km	30	4,500
Total			49,000

Extractable Resource

- Wide Range of Technologies introduce extraction potential uncertainties
- Deployment Water Depth: 50m
- Typical Distance from Shore: 2 5 miles (narrow continental shelf)
- Width of device array: < 1mile
- Modelled Extraction Efficiencies are technology dependent and range from 9% 30%
- => 15% is used for this study

Primary Average Power	49,000MW
Extractable Power (15%)	7,350MW
Annual Extractable Energy	64 TWh
West Coast Annual Electricity Demand	376 TWh
% of electric production from ocean wave	17%

Tidal Energy Resource Characteristic

Highly Predictable

- Gravity Driven
- Very localized
- Power = $f(v^3)$

Tidal Current Energy

Puget Sound - Washington

Puget Sound Resource Summary

	Resource Size (MW)	Extraction Limit	Resource Intensity (kW/m²)	Eddies/Turbulence	Flow Directionality	Average/Max Depth (m)	Seabed	Interconnection	Maritime Use	Nearest Port Facility
Northern Admiralty Inlet	180 MW	Fluid flow	0.6 kW/m² (hot spots)	Eddies outside project area	Bi- directional	60/90 m	Cobbles, gravel, sand, bedrock (?)	115 kV	Shipping, Ferry, Navy, Fishing, Diving	Everett, Port Angeles
Bush Point	140 MW	Fluid flow	0.4 kW/m²	Billows	Elliptical	90/130 m	Cobbles, gravel, sand	115 kV	Shipping, Fishing	Seattle, Everett
Deception Pass	26 MW	Fluid flow, Space	5.5 kW/m²	Strong eddies	Bi- directional	25/40 m	Bedrock	115 kV	Diving	Anacortes, Everett
Guemes Channel	35 MW	Space	1.5 kW/m² (estimate)	Eddies outside area	Bi- directional	15/25 m	Rocky sediments	115 kV	Oil tankers, Ferry	Anacortes, Everett
Rich Passage	9 MW	Space	0.9 kW/m²	Eddies outside area	Bi- directional	15/30 m	Gravel and sand	12.5 kV	Navy, Fishing	Bremerton
Agate Pass	3 MW	Space	1.5 kW/m²	Eddies outside area	Bi- directional	6/10 m	Gravel and clay	115 kV	Fishing, Diving	Bremerton
Spieden Channel	56 MW	Electrical	0.6 kW/m²	Eddies outside area		70/125 m	Gravel (little data)	12.5 kV	Fishing, Ferry	Fri. Harbor, Port Angeles
San Juan Channel	45 MW	Space, Electrical	0.6 kW/m²	Eddies in shallows		60/135 m	Gravel (little data)	12.5 kV	Fishing	Fri. Harbor, Port Angeles

Extractable Resource

- Extraction Limits for tidal power are a function of available space within an area of interest and available resource
- New research indicates that extraction limits are a function of total power available within an estuary
- 15% extraction is used for this assessment, but limits are likely much higher (factor 3 10)

Primary Kinetic Energy	6 TWh
Extractable Energy (15%)	0.9 TWh
West Coast Annual Electricity Demand	376 TWh
% of electric production from tidal power	< 1%

Confidence in Resource Estimates

	Wave	Tidal	Wind	
Primary Resource Potential	High	Medium	High	
Technical Extractable Limit	Medium	Low	High	
Practical Extractable Limit	Medium	Low	Low	

Summary – U.S. Wave and Current Energy Resource

<u>Assumptions</u>

Ocean Wave - 15% of incident wave energy; Wave climate 10kW/m or better; excluding Bering Sea.

Tidal Current estimated from aggregate siting studies; 15% extraction permitted – could be significantly larger; Significant further work is needed to define extractable potential.

Offshore Wind estimated from NREL studies. Assumes deployment density of 5MW/km²

Total Generation Potential = 186 TWh/year => 21 GW average electrical power

Total Electricity Production CA,OR,WA => 43GW average electrical power

Resource Potential is about 50% of current electrical production

Deep-water offshore wind could add another 1000TWh/year to this

Thank you

Mirko Previsic re vision consulting, LLC

Email: mirko@re-vision.net

Ph: 916-977 3970

